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Abstract. We use a high-temperature star-graph expansion to mmpute the free energy and the 
susceptibility of a q-state Potismodel for arbitrary q on d-dimensional hypercubic lattices. The 
series are to order O(10) in the expansion variable v := (eK - l)/(eK + (q - 1)). We show 
how to compute the expectation value of any operator on a finite graph for arbitrary number q 
of states of the Pons-model. 

1. Introduction 

The Potts-ferromagnet is defined by a simple Hamiltonian 

The spins can be in q different states. It is possible to map the q = 2 case to the Ising- 
model. In contrast to the well known king-ferromagnet this model has no spin-inversion 
symmetry for general q. This enriches the model but also maks  it far more complicated. 

For the two-dimensional model critical properties are known exactly [I]. The model 
shows a first-order phase transition for q z 4. From the king-model (4 = 2) it is known 
that the critical dimension d, above which mean-field critical behaviour applies is d, = 4. 
The critical dimension for the percolation limit 4 = 1 is 6. It is assumed that these points 
lie on a curve in the (d, 4 )  plane which separates a region of first-order phase transitions 
from continuous phase transitions. This curve is not fully known [2]. It would be very 
interesting to study the exact location of this curve as accurately as possible. On the other 
hand a general formula for some thermodynamic functions, which are used to determine 
the order of a phase transition, as a function of 4 and d would open the possibility to study 
the dependency of the type of phase transition on these parameters. It would be possible to 
gain some insight on how a discontinuity in these thermodynamic functions arises. 

Potts-models were studied by many authors, for a review see [l]. We know a lot of 
details about special cases especially on simple cubic lattices. The susceptibility in the 
cases q = 3,4 ,5 ,6;  d = 2 were studied by high temperature series expansions (m) up 
to O(8) [3]. The case q = 2 is the well known king-model 141, where recently a I~TE 
with 15 terms for general dimension was published [5 ] .  In four dimensions a HTE of the 
susceptibility is known up to O(17) [6]. The q = 4 Potts-model was also studied via series 
expansions, the free energy and the susceptibility were obtained for arbitrary dimensionality 
up to O(10) [7]. Very recently low-temperature series of the susceptibility for the Ising- 
model were extended up to O(24) and high-temperature series of the susceptibility were 
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extended to O(22) [9]. In two dimensions, where the self-duality relation holds, we have 
for comparison a low-temperame expansion of the case q = 8 with 25 excited bonds for 
the susceptibility [lo]. 

All of these results lack the possibility of studying the dependency on the parameters q 
and d .  Some effort was put into the study of a large q expansion [ll, 121. 

We are able to present a method which is exact in q and d up to the achieved order of 
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the HTE. 

2. Method 

The Helmholtz free. energy A of the Ising-model has a star-graph expansion [13]. Therefore 
the inverse susceptibility which can be written as second derivative of A with respect to the 
magnetization M 

also has this property. The proof for the king-model I133 can be extended to the general 
q-state Potts-model [SI. The partition function for a N-spin system can be written as 

The exponential function is rewritten as 

with the expansion variable for the general q-state Pons-model 

(2.3) 

(2.4) 

which simplifies for q = 2 to U = tanh K/2,  the well known king case. The symmeuy 
of the tanh is unique in this family of functions. This is the source of the problems one 
encounters when dealing with general q-state Potts-models. 

Computing the trace means one has to know all states of the system. In the case of the 
q-state Potts-model this is related to the chromatic function of the graph [I]. But one does 
not have to compute the full chromatic function, if one looks at the Hamiltonian in (1.1) 
the delta-function is the essential ingredient. One only has to know the different classes 
of colourings, which are defined by the same energy content. It does not matter in exactly 
what state a spin and its neighbour are. It is only interesting if both are. in the same state 
or in diflerent states. This is a significant simplification of the problem of finding all states 
of the system. Furthermore, it is noticeable that a graph of N vertices can have at most 
N different colours attached to them. By means of this it is easy to generate all classes of 
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Table 1. All states of the graph p3 in a three-state Potts-model. 
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3 qual vertices 
AAA BBB CCC 

2 equal vertices 

AAB AAC BBA BBC CCA CCB 
ABA ACA BAB BCB CAC CBC 
ABB ACC BAA BCC CAA CBB 

3 different vertices 
ABC BCA CAB CBA BAC ACB 

different colourings of the graph which belong to the same energy. Consider the triangle 
graph p3. Table 1 shows al l  different colourings of the graph with three colours. 

If one looks at the first column these entries define a pattern of all the configurations 
in the corresponding line. This means the symbols A, B, C are reinterpretated as possible 
colours. Different symbols mean different colours but it is not specified which colour is 
meant. So it is sufficient to know all different patterns of N vertices and 4 possible colours 
to generate all different colourings. The number of all colourings associated to a certain 
pattern can be computed by means of simple combinatorics. One finds that the number of 
realizations of a pattern with n different symbols out of a set of q elements is simply 

(2.5) 

An example will show how this can be used to compute the partition function of the 
triangle graph p3: 

AAA 

AAB 
ABA 

ABB 

ABC 

(2.6) 

One can evaluate the delta functions very comfortably by using a pattern-matching 
procedure on the patterns and therefore it is not necessary to compute the Boltzmann-weight 
for each pattern. It is sufficient to compute the (here three) possible weights and collect 
the patterns with their combinatorial factors which possess the same weightfactor. By this 
means it is possible to compute the expectation value of any function F by simply generating 
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all patterns, computing their combinatorical factors and applying a pattem matching if the 
functions F contains deltas. 

In c o n a t  to the king-model where computing the trice can be transformed into a 
‘graphical’ rule which says ‘use all polygon-graphs’ one has to use all closed graphs in the 
general q-state Potts-model. Even worse, they cany different multiplicities depending on 
the topology of the graph. The result in (2.6) translated in a graphical picture is up to a 
factor (1 + (q - l)p3), p3 being the only closed graph among the subgraphs of p3. The 
prefactor is (q - l), in the Ising-case this simplifies to 1. A general ‘graphical’ rule for 
computing these factors is not known. However, one finds that this factors solely depend 
on the topology of the subgraphs. The factors for the first topologies arising are shown in 
figure 1. With the help of this table it is possible to write down the partition function for 
all graphs which contain no other star-subgraphs than such with these topologies without 
explicitly computing the hace. One only has to generate all star-subgraphs of the given graph 
and determine their topology, e.g. the first graph with an a topology, which is embeddable 
in a cubic lattice. One of its realizations is drawn in figure 3 in the second column of the 
last row. One has to look for closed subgraphs, find out their topology and look up their 
factor in the table. 
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The subgraphs stand for ufiood5. The result of the example is 

Z(o113132) = 1 + (q - 1)(3u4 + 2v6 + U’) + 2(q - l)(q - 2)(u7 f u9) + (q - 1)2u8 
+ (q - l)(q - 2 ) Z U l O .  

This computation of the partition function corresponds to a ‘graphical‘ computation as 
shown in figure 2. 

0 
P 

theta 0 

a 

P Dl 
7 A 

Figure 1. Multiplicities of the subgraphs in the Computation of the partition function of the 
q-state Potts-model. 
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Figure 2. Computation of the partition function of the a’ 13132-graph. 

Notice that all the factors for graphs which contain odd vertices vanish in the king-case 

We computed the partition function and all two-point correlations of all star-graphs up 
q = 2. In the example here only polygons and so-called ‘figure-eight’ graphs survive. 

to O(10) for simple cubic lattices. The contributing graphs are listed in figure 3. 

D R A Q D  
&CE€lB” 

Figure 3. Star graphs up to O(10) on simple cubic lattices. 

We used a program especially written to compute the expectation values in the manner 
described above. These results were used to compute the free energy and the inverse 
susceptibility as follows: 

A = ln(Z) (2.7) 

The right-hand side of (2.8) can be seen as the sum of some matrix elements Mij.  The 
inverse of the matrix M is computed to generate the correct weight function for the star- 
graph expansion. The star-graph weight of a graph g is defined as 

(2.9) 

The sum to be subtracted runs over all star-subgraphs of g. By using the symmetry of each 
graph the number of matrix elements to be computed can significantly be reduced. 
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3. Results 

The free energy of the q-state Potts-model for arbitrary dimension d of a simple cubic lattice 
is 
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F = ((28dz + 2328 d3 + 23 136d4 + 47616ds)(q - 1 )  + (12dz + 288d3 + 768d4) 
X (-4' + 2q - 1) + 24d3(-2q2 + 4 - 2)  
+ ( 4 4  +312d3 + 1728&)(q2 -3q + 2) + (2dz +252d3 + 1152d4) 
X (4' - 3q + 2) + (2  dz + 12d3)(-2q2 +4q - 2) + 24 d3(q3 - 6qz + 1 l q  - 6 )  
+(12d3+32d4)(-6-7qz+12q+q3)+(2dz+48 d3+96d4)(-4-5q2+8q+q3) 

f 6  d3 (-4 -5q2+8q +q3) + (4 dz +72 d3 + 192d4)(-4-5q2 + 8q +q3))  U'' 

+((12dz+288d3+768d4)(q2 - 3 q f 2 )  
+ (20d3 +32&)(q2 -3q +2) + 8d3(q3 - 6q2+ l l q  - 6))  U' 
+((7dz+186d3+648d4)(q-l)+ d2(q2/2+q- 1/2) 
+(2dz+12d3)(-q2+2q - 1)+24d3(q2-3q +2))u8 
+ ~ 2 d ~ + 1 2 d ~ ) ( ~ ~ - 3 ~ + 2 ~ ~ ~ + ( 2 d z + 1 6 d ~ ) ( ~ - 1 ) ~ ~ +  dz(q-1)u4 

' 

where d, stands for the binomial coefficients (t). This reduces for 4 = 2, d = 2,3 to the 
well known king free energy. Notice that in the king-case the odd terms 

The series of the susceptibility for general q and d are too lengthy to be written down. 
For documentation the special cases d = 2-7 are shown in the appendix. 

vanish. 

4. Discussiou 

It should be possible to extend the series without too much additional labour by two terms. 
The series analysis of some special cases in which longer series and exact results are known 
showed us that where a second-order transition occur we can achieve a precision up to one 
decimal place in the critical temperature and the exponents as well. This encourages us to 
extend the analysis to try to evaluate the critical line which separates the region of first- 
order and second-order phase transitions in the (q, d )  plane in a more accurate way than it 
is known. This analysis of the series will be presented elsewhere. 
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Appendix. 
temperature series expansion 

Q-state Po&-model in d dimensions on hypercubic lattices high- 

x(q.d = 2, U )  = 1 + 4 v  
+ 1 2 2  
+ 36 v3 
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+ (76 + lzq) u4 

+ (196 + 40q) us 

+ (316 + 212q) us 

+ (932 + 4004 + 60q') u7 

+ (780+ 1900q+ 148q') U' 

+ (4420+ 1840q + 1348q') u9 

+ (-660+12848q+ 1788q2+336q3)u'0 
+ O(u") 

x ( q , d =  3, U) = I +6u  
+ 30 U' 
+ 150u3 

+ (654 + 36 q )  u4 
+ (2982 + 264 q) vs 

+ (11790 + 24604) u6 

+ (51126 + 13104q + 540q') u7 

+ (189870+ 83076q + 47884') us 

+ (813702 + 373920q + 51364q2+ 336q3) U' 
+ (2826174+ 2076864q + 307260q2 + 12NOq3) ul" 

+ O(v") 
x ( 4 , d  = 4, U )  = 1 + 8 U 

+ 56 U' 
+ 392 u3 
+ (2552 + 72 q )  u4 
+ (16904 + 816q) u5 

+ (105944 + 10296q) u6 

+ (681224 + 876484 + 18OOq') u7 

+(4174328+799944q+Z4888qz)us 

+ (26345096 + 6044256q + 374456q' + 1344 q3)  v9 

+ (158933624 + 48252768 4 + 3752008 4' + 70N0q3) U'' 

+ O(v")  
x ( q , d = 5 , u )  = 1 + I O U  

+ 90 U' 
+ 810u3 
+ (6970 + 12Oq) v4 
+ (60490 + I840q) us 

+ (510970 + 29000q) u6 
+ (4359530 + 334240 4 + 4200 q2) U' 

+ (36471930 + 39329204 + 78040q') u8 
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+ (308006410 + 40604800q + 1484440q' + 3360q3) U' 
+ (2560931610 +425372480q + 20129320q2 + 232160q') do 
+ o(u") 

x(q,d = 6 , u )  = 1 +12u 
+ 132 U' 
+ 1452 u3 
+ (I5492+ I8Oq) u4 

+(166092+3480q)u5 
+ (1753812 + 655804) u6 
+ (18606252+946800q + 8100q') u7 
+ (195530052+ 13576980q + 188460q') U* 
+ (2062580172 + 175852560q + 4296860q2+ 6720q3) U' 
+ (21613975332 + 2269255440q + 72618660q' + 579120q') ul' 
+ o(u") 

+ 182 U' 
x(q,d=7,v)  = 1 + 14u 

+ 2366 u3 
+ (30086 + 252q) u4 
+ (383726 + 5880q) us 
+ (4848326 + 1287729) u6 

+ (61411742 + 2226000q + 13860q') u7 
f (7738831 10 + 37577820q + 386988 q') u8 

+ (9769366670 + 582573600q + 10241308 q2 + 1 1760q3) U' 
+ (122931701270 + 8910306048q + 206218628q' + 1215536q3) U'' 

+ o(u") 
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